
Block 02

Architecture of MCU, instruction set, GPIO

2023

EmLab @ FI MUNI



Seminar on Digital System

Architecture



PIC18 core

� this will be a high level overview

� detailed description in datasheet

� most of following informations can

be generalized for other MCUs

1



ALU

� the ”core” that does most of the

computational work

� consists of:

� ALU - arithmetic-logic unit

� WREG - working register

� STATUS register

� 8x8 multiplier

2



Control, program counter, stack

� control:

� controls the whole CPU

operation

� it is what makes the CPU an

automata

� program counter:

� stores address of current

instruction to execute

� auto increments

� tighly coupled to stack

� stack:

� normal stack, just like in CPU

� designed to only hold return

address for PC

� can insert own data

� 31 bytes 3



Program and data memory

� program memory

� flash based

� byte reads

� block writes and erases (64 bytes)

� data memory

� static RAM

� byte operations (read, write)

� GPR vs SFR

� EEPROM for nonvolatile storage

(not memory mapped)

� addressing quite complex

� each have their own address space

4



Clocks

� provide all required clocks

� internal and external oscillators

� very configurable, include PLLs

� complex topic on it’s own

� can clock from kHz to 64 MHz

5



Buses

� datapath for data, instructions

� PIC18 only has two internal buses

� 16bit for instructions

� 8bit for data

6



Peripherals

� the main feature of MCU

� provide external communication,

timing, etc.

� each peripheral can be very

complex

� controlled over memory-mapped

registers

� memory-mapped : the registers live

in data memory address space

7



What happens at reset

� must be well defined, MCU needs to start deterministically

� registers, peripherals usually have well defined reset state

� from reset to first instruction:

1. registers, peripherals reset

2. wait until clocks and such stabilize

3. initialize program counter to 0x0 address - reset vector

4. execute first instruction, located at reset vector

5. continue execution loop as normal

8



PIC18 instruction set



High level overview

� instructions are the commands for our CPU

� surprisingly small set of instructions needed to implement any

program

� most instructions are convenience

� PIC18 has 75 constant length instructions

� classified as RISC

� instructions can take more than 1 instruction cycle

9



Single instruction cycle

� each cycle divided into 4 subcycles: Q1 to Q4

� each instruction uses the four cycles differently

� usually follow Decode, Read, Process, Write steps

� program counter incremented every Q1

� PIC18 has two stage pipeline

� we ”prefetch” next instruction

� we need to flush the pipeline when jump or branch occurs

10



Grouping

� 4 groups of instructions in PIC18

� byte-oriented - adding registers ...

� bit-oriented - flipping a single bit ...

� literal - adding a constant to a register ...

� control - calls, jumps, branches ...

11



Understanding/reading instructions

� all required info in datasheet

12



GPIO



GPIO basics

� General Purpose Input/Output

� the most basic external communication method

� commonly found on every MCU, even MPUs

� as input:

� detect digital state of input voltage

� possible values - 0 or 1

� as output:

� set a voltage level on the pin

� possible values - 0, 1, High-Z

13



Basic model of GPIO

� input model - wired straight into register/bus

� output model - one or two switches, depending on the type

� gross over-simplification, but useful mental model

� push-pull vs. open-drain GPIO

14



Pins and Ports

� GPIO pins are organized into ports

� port size is usually dependent on:

� architecture width

� bus width

� a single GPIO peripheral usually has only single port

� writes and reads to the port are parallel

� used in writing parallel communication

15



PIC18 GPIO

� each port is a separate peripheral

� 5 registers per port

� for now, we only need 2 registers:

� TRIS - data direction

� PORT - levels of the pin

16



Writing ASM

� empty ASM project ready in IS

� assignment for the rest of the lecture:

1. set GPIO Port D as output and write 0xFF to it

2. write 0x15 to WREG, add 0x32 to it and display it on LEDs

3. create a subroutine that XORs content of WREG with 0xAA

4. call this subroutine and display result on LEDs

5. try writing a loop that loops 20 times

17



Homework

Mandatory

� create a knight rider effect on LEDs

� can be only a single direction

� you’ll need a delay, you can utilize NOP instructions and loops

Optional

� draw a schematic for controlling 6 LEDs with 3 GPIO pins

� hint: GPIO pins are push-pull and LEDs are directional

18


	Seminar on Digital System Architecture
	PIC18 instruction set
	GPIO

